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Natural Superhydrophobic Surfaces

• Lotus leaf is superhydrophobic.
– Water beads up on surface.

– Waxy hydrophobic material.

– Nanoscale and microscale structure.



Tennessee State Tree (Tulip Poplar) Leaf
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Roughening a hydrophobic surface increases 
the effective hydrophobicity (contact angle)



Superhydrophobic Surfaces
• Hydrophilic: θ < 90ο.

– Glass (38ο).

– Metals, ceramics, some polymers.

• Hydrophobic: θ > 90ο.
– Teflon (120ο), fluorinated polymers, wax

– Some other polymers.

• Surface nanostructure amplifies the 
hydrophobic properties.

• Superhydrophobic: θ > 150ο.
– Natural and synthetic.

– Dramatically different properties.



Artificial Superhydrophobic Surfaces

• Photolithography-based dry etched silicon (Krupenkin et al, Bell Labs).
• Porous polymers (Erbil et al, Kocaeli U., Turkey).
• Vertically aligned carbon nanotubes (Lau et al, MIT).
• Reactive Ion Etched rough silicon (Kim et al, UCLA).

• Fluorinated Nanospheres (Jau-Ye Shiu et al,Taiwan, ROC ) 



Drop/Spike Dynamics

θσσσ cosLVSLSV ⋅+=

For hydrophilic material (θ < 90˚) : σSL < σSV

The total energy of the interface is reduced when the 
interface moves downward

It is energetically advantageous for the drop to wet 
more area (i.e. move downward)  

Young’s Equation:
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Note that each point on the interface is 
in equilibrium, but the total interface 

energy can change with position.   
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Drop/Spike Dynamics
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Drop on Hydrophobic Coned Spikes



Optimized Superhydrophobic Surface Structure
• Optimal surface:

– Minimum solid-liquid contact sharp points.

– Maximum vertical force per contact area.
• Vertical force:

• Contact area for given force: )cos( φθ −∝F

[ ] 12 )(cossin −
−∝ φθφA



Our Goal: Make the Highest Quality Superhydrophobic 
Material Possible (i.e. contact angle ~ 180

ο
)

• Method:
Modify nanochannel plate fabrication technology in order to make uniform 

arrays of spiked cones having the theoretical best superhydrophobic 
structure.   

Nano-Channel Glass Process



Micro/Nano Glass Array Fabrication



Micro/Nano Glass Array Fabrication
1. An etchable tube and less etchable rod are drawn at elevated temperature to a 

fiber which is cut into short pieces.
2. The fiber is (repeatedly) bundled, and redrawn into a fiber, and cut.
3. The fiber pieces are bundled and fused without drawing to make a larger bundle, 

which is sliced into wafers.



Superhydrophobic Micro/Nano-Cone Glass

• Slice final bundle into wafers and polish surface
• Wet etch surface with moderate selectivity ~ 10:1
• Coat surface with hydrophobic material

•Simple Fabrication (no photolithography, no vacuum processing)

•Uniform spacing and height
•Large area, small features



Differential Etching
• Glasses in composite etch at different rates.

–May depend on etchant.
• Core etches more slowly than matrix glass.
• Duration of etch is not critical.
• Pattern continues in bulk material.

– Surface can be easily regenerated if damaged.



SEM image of cones (looking at ~45 degrees )
> 1 million spikes per cm2



Advantages of this approach

• Amazing uniformity
• No photolithography required
• No vacuum processing required
• Can use environmentally and biomedically friendly glass 
• Scalable 
• Inexpensive material and processing equipment
• Elegantly simple process
• Robust 



Water Drop on Glass Movies

“hydrophilic” “hydrophobic”

“Super-hydrophobic”“Super-hydrophilic”

Nanostructure amplifies surface property.



Water Drop Movies



Moses Effect



Moses Effect Movie
Coated and etched wafer 

Surrounded by colored 
water 

“super-hydrophobic”

• Air column over 
material.

• Surface tension holds 
back water.

• Air column is revived by 
adding air.

• Surface was never wet!



High Velocity Water Drop Movie



Stream of Water Demonstration



Self Cleaning Demonstration



A word about this fabrication process:

• Using this fabrication method we can control:
– The cone array pitch
– We can vary the array pitch from location to location
– The cone size (i.e. fill factor)
– Aspect ratio (base length vs. height)
– We can insert holes along with the cones
– Cones can be angled
– Optical properties
– Doping properties 



Tunable Etching Contrast
• Additional mechanism for controlling features:

Tuning the etching contrast through the etchant chemistry.
• Etch contrast depends on [HF], [HF2

-], [H+].
• Tune concentrations by adding NH4F or HCl.

– Dramatic tuning in borosilicate glasses from 1:1 to 30:1.
– Roughness from limited solubility of (NH4)2SiF6 with NH4F.

• Large etchant volume and agitation required.

Add NH4F Add HClHF



Tools for Minimally Invasive Surgery

• Nano-Velcro for Retinal Eye Surgery
• Tools for Endoscopic Surgery

– Easy to integrate
• Optics
• Tubes
• Conductors
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